

ALMA MATER STUDIORUM Università di Bologna

The evolution of 3GPP NTN from 5G to 5G-Advanced and 6G

Space Softwarization: from Physical Layer to Services: a new paradigmatic vision of Space networks

Summer School "Frontier Technologies for Space 2.0 Communications" August 30, 2023

Dr. Alessandro Guidotti, CNIT

3rd Generation Partnership Project

- Standardization allows to specify the best possible technical solution given all the requirements from interested parties
 - operators, network infrastructure vendors, chipset makers, ...

Our Partners		Country
ARIB	The Association of Radio Industries and Businesses (ARIB) www.arib.or.jp	Japan
atis	The Alliance for Telecommunications Industry Solutions (ATIS) www.atis.org	USA
CCSA	China Communications Standards Association (CCSA) www.ccsa.org.cn	China
ETSI	The European Telecommunications Standards Institute (ETSI) www.etsi.org	Europe
tsdsi Indias Telecom SDO	Telecommunications Standards Development Society, India (TSDSI) http://tsdsi.org	India
TTA	Telecommunications Technology Association (TTA) www.tta.or.kr	Korea
Telecommutetion Telecommutetion Committee	Telecommunication Technology Committee (TTC) www.ttc.or.jp/e	Japan

- 3GPP: non-legal body grouping 7 Standard Developing Organisations to prepare, approve, and maintain global-level technical specifications
 - mobile communications technologies, including radio access, core network, and services
 - hooks for non-radio access to the core network and for interworking with non-3GPP networks
 - 3GPP specifications and studies are contribution-driven, by member companies, in WGs at the TSG level
- 840 individual members from the 7 SDOs

Source: https://www.3gpp.org/about-us/partners

3rd Generation Partnership Project

- Regular WGs meeting + quarterly plenary TSG meeting for discussion and approval
- The progress of the standards is indicated in milestones denoted as **Releases**

collection of functionalities, providing developers with a stable platform for the implementation of features at a given point and allowing the addition of new functionalities in subsequent Releases

Source: https://www.3gpp.org/specifications/67-releases

3GPP Non-Terrestrial Networks

- NTN standard: **the result of a joint effort** between stakeholders of both mobile and satellite industries with a two-fold benefit
 - true achievement of global service continuity and resiliency for 3GPP
 - access to the unified and global 3GPP ecosystem and possibility to exploit economy of scale for the satellite industries
- The NTN standard is also supported by vertical stakeholders aiming at
 - the seamless combination of satellite and mobile systems
 - the **support** of all 5G features across different RATs

3GPP Non-Terrestrial Networks

A. Guidotti - The evolution of 3GPP NTN from 5G to 5G-Advanced and 6G

available on the 3GPP website in August, 2023, with a tool proprietary of the University of Bologna. As such, the exact values might be subject to variations, without impacting the general trends.

From interworking to integration

Source: El Jaafari M, Chuberre N, Anjuere S, Combelles L. Introduction to the 3GPP-defined NTN standard: A comprehensive view on the 3GPP work on NTN. Int J Satell Commun Network. 2023;41(3):220-238. doi:10.1002/sat.1471

- Support of three general scenarios, in which we can distinguish:
 - satellite access networks operating in FR1 \rightarrow direct connectivity to
 - outdoor handheld terminals and/or car/drone mounted devices via 5G NR (wideband)
 - outdoor IoT devices via the 4G NB-IoT/eMTC standard (narrowband)
 - satellite access networks operating in FR2 → broadband connectivity to VSATs on rooftops and/or ESIMs on moving platforms

	Direc	ct connectivity (FR1)	Indirect connectivity (FR2)
Targeted terminals	IoT devices	handheld (smart phones) and car/drone mounted devices	VSAT and/or ESIM
Service	Narrowband hundreds of kbps	Wideband few Mbps	Broadband hundred Mbps
Orbit	GSO and NGSO	NGSO	GSO and NGSO
3GPP Radio interfaces	4G NB-IoT/eMTC	5G New Radio	5G New Radio
Market applications	Professional: utilities, agriculture	Consumer Professional: automotive, Public Safety, utilities, agriculture, Defense	Professional: telco (<i>e.g.</i> , backhaul), IPTV, SNG, transportation, Public Safety, Defense

Source: ESA EAGER Project, White Paper, "Architectures, services, and technologies towards 6G Non-Terrestrial Networks," February 2023

The road to NTN in Rel. 17

-	study	phase	normative phase 🗪
	Release 15	Release 16	Release 17
•	2017: initial RAN and SA SIs on NR to support NTN TSG RAN and RAN1 findings reported in TR 38.811	 2018: necessary features and adaptations to support NR protocols in NTN findings reported in TR 38.821 	 2020: WI on the NR enhancements to support NTN findings reported in the TS 38.xyz series
•	use cases and scenarios NTN channel model potential key impact areas	 architectures challenges and solutions for L1, radio protocols, interfaces 	

- 3GPP SA focused on the identification of use cases for NTN-based 5G aiming at
 - service ubiquity and global connectivity, by providing direct access to handset, home access, and IoT devices in under-/un-served areas solving the "0G" issue
 - service continuity and resiliency, by combining TN and NTN to serve mobile platforms
 - service scalability, by efficiently providing multicast/broadcast services (MBS) via NTN

NTN Study Phase

- Study phase: take into account the specific characteristics of satellite networks and channels, which create new technical challenges compared to legacy terrestrial networks
- This required adaptations to tackle issues related to
 - long propagation delays
 - large Doppler shifts and Doppler variations
 - generation of large moving cells on-ground
- Addressed NTN platforms
 - GSO or NGSO spaceborne satellites
 - airborne vehicles operating at altitudes typically between 8 and 50 km
 - HAPS
 - Unmanned Aerial Systems (LTA and HTA)

NTN Study Phase

Release 15

24

3GPP TR 38.811 V15.4.0 (2020-09)

	Deployment- D1	Deployment- D2	Deployment- D3	Deployment- D4	Deployment- D5	Cellular (10 km Radius)						
Platform orbit and altitude when	GEO at 35 786 km	GEO at 35 786 km	Non-GEO down to 600 km	Non-GEO down to 600 km	Airborne vehicle up to 20 km							
relevant Frequency	Ka band	S band	S band	Ka band	S band	S band						
band		070.07	11.001	44.004	(Below 6 GHz)							
Max One way Propagation delay (ms)	Bentpipe: 272.37 ms gNB on board: 135.28 ms	272.37 ms	14.204 ms	14.204 ms	1.526 ms	0.03333 ms	Main attributes	Deployment-D1	Deployment-D2	Deployment-D3	Deployment-D4	Deployment-D5
Max Differential	16 (between Edge of	16 (between Edge of	4.44 (between	4.44 (between	0.697 (between	0.00333(between cell centre and cell	Platform orbit and altitude	GEO at 35 786 km	GEO at 35 786 km	Non-GEO down to 600 km	Non-GEO down to 600 km	UAS between 8 km and 50 km including HAPS
delay (ms)	satellite coverage and Nadir)	satellite coverage and Nadir)	Edge of satellite coverage and	Edge of satellite coverage and	Edge of satellite coverage and	edge) equal to maximum delay	Carrier Frequency on the link between Air / space-borne platform and UE	Around 20 GHz for DL Around 30 GHz for UL (Ka band)	Around 2 GHz for both DL and UL (S band)	Around 2 GHz for both DL and UL (S band)	Around 20 GHz for DL Around 30 GHz for UL (Ka band)	Below and above 6 GHz
Max Doppler	For plane	For plane	+/- 48 kHz	@20 GHz :	@ 2 GHz: +/-	In case of UE on	Duplexing	FDD	FDD	FDD	FDD	FDD
Shint in Kriz	@ 20 GHz: +/- 18.51 kHz @30 GHz: +/- 27.7 kHz	20 GHz		+/- 480 kHz @30 GHz : +/- 720 kHz	mainly due to platform motion	train: +/- 925 Hz	NTN architecture	A3	A1	A2	A4	A2
% of the carrier frequency (Ratio of Doppler Shift over the	10 ⁻⁴ %	10 ⁻⁴ %	0.0024%	0.0024%			4) NTN Terminal type	Very Small Aperture Terminal (fixed or mounted on Moving Platforms) implementing a relay node	Up to 3GPP class 3 UE [2]	Up to 3GPP class 3 UE [2]	Very Small Aperture Terminal (fixed or mounted on Moving Platforms) implementing a Relay node	Up to 3GPP class 3 UE [2] Also Very Small Aperture Terminal
frequency	Nagligible	Nagligible	E4411=/2 @	E 44 kU=/o	Nogligible	Nagligible	NTN terminal Distribution	100% Outdoors	100% Outdoors	100% Outdoors	100% Outdoors	Indoor and Outdoor up to 500 km/b
variation in Hz/s.	INEGIIGIDIE	тиедидиріе	-544 HZ/S @ 2 GHz	-5.44 KHZ/S @ 20Ghz (Downlink) -8.16 kHz/s @30 GHz (uplink)	кедіідіріе	ivegiigidie	SNUYC멷!!맹면PP TR Speed (Release 15)," Se Main rationales	GEO based indirect access via relay node	GEO based direct	(e.g. aircraft) Non-GEO based direct access	Non-GEO based indirect access via relay node	(e.g. high speed trains) Support of low latency services for 3GPP mobile UEs, both indoors and outdoors
A. Guidotti - The	evolution of 3GI	PP NTN from 5G	to 5G-Advanc	ed and 6G			Supported Uses cases, see clause 4	1/ eMBB: multi- connectivity, fixed	1/eMBB: Regional area public safety,	1/eMBB: Regional area public safety,	1/ eMBB: multi- homing, fixed cell	1/ eMBB: Hot spot on demand

NTN Study Phase

N	FN teristics	Technical	Impacted NR features	Potential areas of	Comments
		Moving cell pattern	Hand-over/paging	Higher layers impact	Paging and Hand-over procedures should be adapted to take into account the relative motion of the cell pattern with respect to the tracking area. Further analysis on tracking area design may need to be carried out. Mobility management is also to be considered.
Motion	n of the	Delay variation	TA adjustment	Physical layer impact	Alignment of uplink signals may need to be considered.
vehi	icles	Doppler	Initial downlink synchronization	No impact	The preferred SCS values for Non-Terrestrial Networks may be respectively 60 KHz for frequency bands <6 GHz and 240 KHz for frequency bands > 6 GHz. However it can also operate with lower SCS value.
			DMRS time density	No impact	The preferred DM-RS configuration may be type 1 to cope with Doppler variation rate.
			HARQ	Higher Layers & physical layer Impact	Need to adapt the HARQ specification. Deactivation and/or enhancements of NR HARQ can be considered.
Alti	tude	Long latency	Physical layer Procedures (ACM, power control)	Physical layer impact	The operation/configuration of Adaptive power and coding/modulation control loop protocols may have to be adapted.
			MAC/RLC Procedures	Higher layers impact	Timers limit of MAC/RLC and higher layers loop protocols may have to be extended.
Source: E	SA EAGE size	R Project, Whit Differential	TA in Random e Paper, "Architectures access response message	, services, and technologie Physical layer impact	Doppler/Delay compensation technique can be s fowards 6G Non-Lerrestrial Networks, "February 2023 implemented. Further analysis/simulations using the NTN channel model is needed. Adaptations
A. Guidotti - The evolution of 3GPP NTN from 5	G to 5G	•Advanced a	Random access	Physical layer impact	of PRACH format and random access procedure may have to be considered.

		DMRS time density	No impact	The preferred DM-RS configuration may be type 1 to cope with Doppler variation rate.	
NTN Study Phase		HARQ	Higher Layers & physical layer Impact	Need to adapt the HARQ specification. Deactivation and/or enhancements of NR HARQ can be considered.	
		Physical layer Procedures (ACM, power control)	Physical layer impact	The operation/configuration of Adaptive power and coding/modulation control loop protocols may have to be adapted.	
NTN characterist	Technical ics issues	Impacted NR features	Potential areas of impact	Comments	
Cell size	Differential	TA in Random access response message	Physical layer impact	Doppler/Delay compensation technique can be implemented. Further analysis/simulations using the NTN channel model is needed. Adaptations	
	delay	Random access	Physical layer impact	of PRACH format and random access procedure may have to be considered.	
Propagatio	Impairment	s DMRS frequency density	No impact	Non terrestrial network propagation channel may feature a frequency selective at most comparable with cellular channel.	
channel	Impairment	s Cyclic prefix	No impact	Non terrestrial network propagation channel may feature a worse delay spread at most comparable to cellular channels.	
Duplex sche	ne Regulatory constraints	Duplexing mode (TDD/FDD)	Higher layers impact	FDD is preferred especially for most satellite systems. TDD can be considered for HAPS and for LEO ^(*) .	
Satellite o	Phase noise impairment	PT-RS	Potential constraint on the operation to be further studied	Satellite Radio links are typically operated with relatively low order modulation scheme, in most of the cases up to 16QAM.	
aerial Paylos performanc	e Back-off	PAPR	Physical layer impact	Uplink: It is recommended to use DFT-S OFDM Downlink: Low PAPR scheme may improve performance. However not mandatory to support non-terrestrial networks.	
	(*) No	ote: preverscontrolle01	network that operates in	TDDy havter(Akieladaptech).	
Source: ESA EA	GER Project, Wh	ite PapMAC/RHitectures Procedures	s, services, and technologie Higher layers impact	Timers dimit of MTACARIAC hand higher layers 202. loop protocols may have to be extended.	3
Building on these out assessment of "Cell size	COMES,	TA in Random access response message	Physical layer impact	Doppler/Delay compensation technique can be implemented. Further analysis/simulations using the NTN channel model is needed. Adaptations	detailed
dotti - The evolution of 3GPP NTN from 5G to	G-Advanced	• Random access	Physical layer impact	of PRACH format and random access procedure may have to be considered	

ALMA MATER STUDIORUM Università di Bologna

NTN Normative Phase: Rel. 17

- Focus on NTN-based GEO and LEO systems with implicit compatibility to support HAPS and ATG
- Main characteristics
 - transparent payload architecture
 - coverage type
 - Earth-fixed: the beams continuously cover the same geographical area all the time (e.g., GEO)
 - Quasi-Earth-fixed: the beams cover a geographical area for a limited period and a different area in the next period (e.g., NGSO with steerable beams)
 - **Earth-moving**: the beams cover a fixed area with respect to the satellite, i.e., they move on the surface of the Earth along the satellite's movement on its orbit (e.g., NGSO without steerable beams)
 - spectrum in FR1: S-band and L-band
 - handheld terminals with GNSS capabilities
 - the UE is capable of estimating its location and report it to the network
 - FDD
 - TDD unfeasible due to the large propagation delays on satellite links
 - Earth-fixed tracking
 - the Tracking Area (set of on.ground cells) is fixed on the Earth's surface, which requires an adaptive mapping between the gNB and the beams for NGSO (due to a feeder link switch)

- Transparent payload \rightarrow user and feeder link implementing the NR-Uu interface
- All protocols and procedures are terminated and managed on-ground
- Depending on the specific implementation, mutliple gNBs might be needed to manage a single NTN node

1890 1880

1900

n2 UL n25 UL

> n39 n98 SUL

DL operating band

2170 MHz - 2200 MHz

NTN Rel. 17: spectrum

Deployment exclusively in FR1

																				nź	255			1626.5 M	Hz -	- 166	50.5	MHz		1	525	MHz ·	- 15	59 N	/Hz
1910	 								2020			0110			07.50		0017	2150	0/17						1470 -	1480 -	1490 -	1500 -	1510 -	1520 -	1530	1540	1550	1560	1570 -
		ni U	ЛL n6	5 UL		n250	6 UL	,							nl	DL	65 D	L	I	1256	DL											n255 DI n24 DL*			
			n2 D n25	DL] 	70 DL	n34]														, , ency		11 D		21 DL							
		n84 5	SUL					19	5 SUI							n	66 D	L						1 HARQ ing for	n9 n7	2 DL 75 DL		_	•						
	n	25	6 (ı ac	∣ djC	l C	er	⊣ ht	†c	r I	ן 11 י	ا FD)	D) () (ar	nd	I	• Us O [.] H <i>i</i>	er the \R(Plar er M Q), I	ne: F AC UP: I	RAC asp RLC	CH Dec C, P	aspects, cts (e.g. PDCP		R.	AN4 Nev • TN • Sc	: RF & w bar N/NTN atellite	RRA nds I coe e Ac	M per existe	rforn ence s Noo	nance e de, UE	•		C •

 System information broadcast • Control Plane: Tracking Area Management, Idle/connected mode mobility, UE Location

eesa

UL operating band

1980 MHz - 2010 MHz

Duplexing mode

FDD

FDD

- tull/partial overlap with n65, n2,
- RF requirements for NTN access
- Service max. 30 MHz on NTN DL/UL, a single nananela terminal can nave 360 KHz on the UL

operating band

SCS: 15 kHz or 30 kHz

1710

NTN Rel. 17: impact on specifications

RAN1: Physical layer	RAN3: Access network architecture	SA2: System level
 Timing relationship UL time and frequency synchronization Enhancements on HARQ Polarization signaling for VSAT/ESIM 	 Network Identity handling Registration Update and Paging Handling Cell Relation Handling Feeder Link Switch-Over (NGSO) Aspects Related to Country- Specific Routing 	 Mobility management with huge cell size UE location and support of regulated service QoS class for GEO satellite links Impact of satellite backhauling
RAN2: Access layer	RAN4: RF & RRM performance	CT1: Network protocols
 User Plane: RACH aspects, Other MAC aspects (e.g. HARQ), UP: RLC, PDCP System information broadcast Control Plane: Tracking Area Management, Idle/connected mode mobility, UE Location Service 	 New bands TN/NTN coexistence Satellite Access Node, UE RRM: e.g. timing compensation (idle, connected mode), GNSS accuracy 	 PLMN (re)selection NAS timers

NTN Rel. 17: impact on specifications

WILEY

TABLE 5 3GPP RAN specifications updated for the integration of satellite components in the 5G.^a

3GPP working group	3GPP RAN specifications		
RAN1	TS 38.211 Physical channels and modulation		
	TS 38.213 Physical layer procedures for control		
	TS 38.214 Physical layer procedures for data		
RAN2	TS 38.300 Overall description; Stage-2		
	TS 38.304 User Equipment (UE) procedures in idle mode and in RRC Inactive state		
	TS 38.306 User Equipment (UE) radio access capabilities	TABLE 6 3GPP SA and CT specifications updated for	or the integration of satellite components in the 5G.
	TS 38.321 Medium Access Control (MAC) protocol specification	3GPP working group	3GPP SA specifications
	TS 38.322 Radio Link Control (RLC) protocol specification	SA1	TS 22.261 Service Requirements for the 5G System
	TS 38.323 Packet Data Convergence Protocol (PDCP) specification	SA2	TS 23.501 System architecture for the 5G System (5GS): Stage 2
	TS 38.331 Radio Resource Control (RRC); Protocol specification		TS 23.502 Procedures for the 5G System (5GS). Stage 2
RAN3	TS 38.401 NG-RAN; Architecture description		TS 23.503 Policy and charging control for the 5G System (5GS). Stage 2
	TS 38.410 NG-RAN; NG general aspects and principles	CT1	TS 23.122 Non-Access-Stratum (NAS) functions related to Mobile Station (MS) in idle mode
	TS 38.413 NG-RAN; NG Application Protocol (NGAP)		TS 24.501 Non-Access-Stratum (NAS) protocols for the 5G System (5GS). Stage3
	TS 38.423 NG-RAN; NG-RAN; Xn Application Protocol (XnAP)		· · · · · · · · · · · · · · · · · · ·
RAN4	TS 38.101-5 ^b User Equipment (UE) radio transmission and reception, part 5: Satellite access Radio Frequency (RF) and performance requirements		
	TS 38.108 Satellite Access Node radio transmission and reception		
	TS 38.133 Requirements for support of radio resource management		
	TR 38.863 Non-terrestrial networks (NTN) related RF and co-existence aspects		
	TS 38.104 Base Station (BS) radio transmission and reception		
	TS 38.181 Satellite Access Node conformance testing; NTN specific characteristics		

^a3GPP RAN specifications updated for NB-IoT/eMTC support for NTN are within 36 series: Replace 38 per 36 in Table 5.

^bFor IoT NTN: TS 36.102 Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception for satellite access.

Source: El Jaafari M, Chuberre N, Anjuere S, Combelles L. Introduction to the 3GPP-defined NTN standard: A comprehensive view on the 3GPP work on NTN. Int J Satell Commun Network. 2023;41(3):220-238. doi:10.1002/sat.1471

5G NTN services

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023 A. Guidotti - The evolution of 3GPP NTN from 5G to 5G-Advanced and 6G

Broadband satellite service

Operator	Satellite system (deployed)	Spectrum	Technology	Operational	Services
Space X (Starlink)	12000+ (3580)	Ku-band	Proprietary	Yes	Broadband
OneWeb	648 (542)	Ku-band	Proprietary	TBD	Broadband
Kuiper	3236 (0)	Ka band	Proprietary	Estimated 2024	Broadband
Galaxy Space	1000 (7)	Q/V spetrum	Proprietary	TBD	Broadband
Boeing	147 NGSO (1)	V band	Proprietary	TBD	TBD
Inmarsat	14 GEO (14)	TBD	Proprietary	TBD	Broadband to IoT
Telesat	188 (2)	C, Ku, Ka bands	Proprietary	TBD	Broadband
Echostar	10 GEO (10) Ku, Ka, S bands		Proprietary	Yes	Broadband
HughesNet	3 GEO (2)	Ka band	Proprietary	Yes	Broadband
Viasat	4 GEO (4)	Ka band	Proprietary	Yes	Broadband

Source: 5G Americas, White Paper, "Update on 5G Non-Terrestrial Networks," July 2023. A. Guidotti - The evolution of 3GPP NTN from 5G to 5G-Advanced and 6G

IoT/D2C satellite service

Operator	Satellite system (deployed)	Spectrum	Technology	Operational	Services					
Dedicated providers										
Space X	2016 LEO (0)	MNO spectrum/ 2GHz MSS	Pre Rel-17 3GPP	2024	Messaging, speech, broadband					
AST SpaceMobile	243 LEO (1)	MNO spectrum	Pre Rel-17 3GPP	2024	Messaging, speech, broadband					
Lynk	5000 LEO (3)	MNO spectrum	Pre Rel-17 3GPP	2Q2023	Messaging, LDR (low- data rate)					
Sateliot	250 LEO (1)	2.0GHz MSS	Rel-17 NB-IoT (NB-NTN)	TBD	NB-IoT					
Iridium	66 LEO	L-band	Proprietary	Yes	LDR/Messaging					
Orbcomm	31 LEO	137-150 MHz	Proprietary	Yes	Assets tracking					
GlobalStar	24 LEO	L/S-band	Proprietary	Yes	Assets tracking					
Ligado 1 GEO		L-band	Rel-17 NB-IoT (NB-NTN)	TBD	NB-IoT					

Source: 5G Americas, White Paper, "Update on 5G Non-Terrestrial Networks," July 2023. A. Guidotti - The evolution of 3GPP NTN from 5G to 5G-Advanced and 6G

IoT/D2C satellite service

Operator	Satellite system (deployed)	Spectrum	Technology	Operational	Services
		Partn	erships		
T-Mobile/SpaceX	2016 LEO (0)	MNO spectrum	3GPP-Rel 12	2024	Messaging, Data, Voice, Video
AT&T/AST	243 LEO (0)	MNO spectrum	3GPP-Rel 12	2024	Messagign, Data, Voice, Video
Verizon/Kuiper	3236 (0)	Ka band	Proprietary	TBD	Ground sites backhaul - LTE and 5G
Apple/Globalstar	24 LEO	L-band, S-band	Proprietary	4Q2022	Emergency Messaging
Qualcomm/ Iridium	66 LEO	L-band	Proprietary	4H2023	Messaging
Mediatek/ Skylo/Bullitt	6 GEO (Inmarsat)	L-band	3GPP-NTN	1Q2023	Messaging
Skylo/ Ligado/Viasat	1 GEO (Ligado)	L-band	3GPP-NTN	2H2023	NB-IoT, Messaging, LDR

Source: 5G Americas, White Paper, "Update on 5G Non-Terrestrial Networks," July 2023. A. Guidotti - The evolution of 3GPP NTN from 5G to 5G-Advanced and 6G

3GPP NTN beyond Rel. 17

 Constrained payload scenarios
 Constrained payload scenarios
 Freegonerative payloads
 SG-NR further enhancements

 • dG NB-IoT/eMTC: transparent payload scenarios
 46 NB-IoT/eMTC enhancements
 46 NB-IoT/eMTC
 SG-NR further enhancements

 • dG NB-IoT/eMTC: transparent payload scenarios
 46 NB-IoT/eMTC enhancements
 46 NB-IoT/eMTC
 SG-NR further enhancements

 • addition part (satellite and UE) specifications in S-/L-band
 • Radio part (satellite and UE) specifications above 10 GHz
 • 66 service requirements for NTN
 • 66 Study to support the NTN component
 • 66 features to support the NTN component

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023

- allow the verification of the GNSS coordinates determined by the UE
- optimise mobility procedures in both idle and connected modes
- Enhancements to the NB-IoT/eMTC radio protocols to
 - optimise mobility procedures
 - improve the support of small constellations providing discontinuous service over a given area

Release 17

	Dire	ct connectivity (FR1)	Indirect connectivity (FR2)	
Targeted terminals	IoT devices	handheld (smart phones) and car/drone mounted devices	VSAT and/or ESIM	
Service	Narrowband hundreds of kbps	Wideband few Mbps	Broadband hundred Mbps	
Orbit	GSO and NGSO	NGSO	GSO and NGSO	Release 18
3GPP Radio interfaces	4G NB-IoT/eMTC	5G New Radio	5G New Radio	
Market applications	Professional: utilities, agriculture	Consumer Professional: automotive, Public Safety, utilities, agriculture, Defense	Professional: telco (<i>e.g.</i> , backhaul), IPTV, SNG, transportation, Public Safety, Defense	

Source: ESA EAGER Project, White Paper, "Architectures, services, and technologies towards 6G Non-Terrestrial Networks," February 2023

NTN Rel. 18: spectrum

- Support of FR2 for VSAT only
 - evaluations based on transparent payloads (IAB/regenerative FFS)
 - configurations
 - 50, 100, 200 MHz channels + optional 400 MHz
 - SCS: 60 kHz or 120 kHz
 - co-existence analysis on-going (adjacent channel)

For the Ka-band Downlink NTN band definition, 17.7-20.2 GHz define one NTN band covering the full harmonized NTN Ka-band DL (n512, n511, n510) Ka-band space-to-earth range of 17.7-20.2 GHz for Regions 1, 2 and 3. Define 3 NTN bands for Ka-band UL one band covering the full harmonized Ka-band 27.5-30.0 GHz Earth-to-space range of 27.5-30.0 GHz (n512) applicable for Region 1, Region 3, and Region 2 28.35-30.0 GHz NTN Ka-band UL countries except the US (n511) additional two bands for the US/FCC market 27.5-28.35 GHz and countries deploying the same assignments: (n510) 27.5-28.35 GHz range 28.35-30.0 GHz range Region 1, Region 3, and n512, n511, n510 n512 Region 2 countries except US US market and countries with n510 n511 the same assignments

Source: ESA EAGER Project, White Paper, "Architectures, services, and technologies towards 6G Non-Terrestrial Networks," February 2023.

Source: EC HORIZON-JU-SNS-2022 Project 5G-STARDUST, D3.1 "System Requirements Analysis and Specifications," July 2023.

NTN Rel. 18: spectrum

Co-existence scenarios currently considered

No.	Combination	Aggressor	Victim	Objective	NTN band
1	TN with NTN	NTN UL	TN UL	ACLR NTN UE to be varied/defined ACS TN gNB fixed	27 GHz
2	TN with NTN	TN UL	NTN UL	ACLR TN UE fixed ACS NTN SAN to be varied/defined	27 GHz
3	TN with NTN	NTN UL	TN DL	ACLR NTN UE to be varied/defined ACS TN UE fixed	27 GHz
4	TN with NTN	TN DL	NTN UL	ACLR TN gNB fixed ACS NTN SAN to be varied/defined	27 GHz
5	TN with NTN	TN DL	NTN DL	ACLR TN gNB fixed ACS NTN UE to be varied/defined	17 GHz
6	TN with NTN	NTN DL	TN DL	ACLR NTN SAN to be varied/defined ACS TN UE fixed	17 GHz
7	TN with NTN	NTN DL	TN UL	ACLR NTN SAN to be varied/defined ACS TN gNB fixed	17 GHz
8	TN with NTN	TN UL	NTN DL	ACLR TN UE fixed ACS NTN UE to be varied/defined	17 GHz

Source: 3GPP Tdoc R4-2309768, "Collection table for NTN co-existence in above 10GHz calibration results," WG4 Meeting # 107, May 2023.

Rel. 19: proposed topics for NR-NTN

Improve the service experience

- Coverage enhancements (DL and possibly UL)
- NTN/TN Mobility enhancement in connected mode (e.g., CHO)
- New Notification/Alert message for UE terminating calls with UE in poor SNR conditions preventing paging message reception
- Support of HD mode RedCAP UE (Reduced Capabilities) in FR1

New capabilities

- Support of Regenerative payloads (i.e., with ISL)
- Support of MBS (Multicast and Broadcast Services)
- Network-based positioning enhancements (NGSO & multi satellite visibility) for reliable UE location determination
- Support of UE with GNSS independent operation for uplink time and frequency synchronization in NTN based access (idle/connected modes)
- Asynchronous multi-connectivity (e.g., between two satellite access, i.e., NGSO and GSO; possibly between NTN/TN) for above 10 GHz only
- Support of discontinuous coverage (mitigating coverage holes during deployment/operation of constellation)

Rel. 19: proposed topics for IoT-NTN

Improve the service experience

- NTN/TN mobility enhancement (signalling overhead optimization)
- Enhanced HARQ disablement (e.g. adaptative repetition scheme)

New capabilities

- Regenerative payload = Store and Forward (i.e., eNB + ePC network elements)
- Support of GNSS independent operation for uplink time and frequency synchronization in NTN based access
- 5GC supporting IoT-NTN

• Architecture evolution in three directions: regenerative payloads, IAB, Multi-Connectivity

• Full gNB on-board

- all protocols up to SDAP/RRC are terminated on-board
- the feeder link SRI (PHY+MAC) shall carry the NG upper layers
 - the NG interface is logical
- routing schemes and algorithms now also involve the GW and the NTN payload

Source: ESA EAGER Project, White Paper, "Architectures, services, and technologies towards 6G Non-Terrestrial Networks," February 2023.

Source: EC HORIZON-JU-SNS-2022 Project 5G-STARDUST, D3.1 "System Requirements Analysis and Specifications," July 2023.

A. Guidotti - The evolution of 3GPP NTN from 5G to 5G-Advanced and 6G

- Functional split
 - scalable solution based on NFV/SDN for system tailoring
 - challenges related to F1
 - only opt.2 split is full-3GPP

UNIVERSITÀ DI BOLOGN/

• Architecture evolution in three directions: regenerative payloads, IAB, Multi-Connectivity

- both direct and indirect connections are possible
- challenges related to F1-SRI
- Backhaul Adaptation Protocol between RLC and IP

- only indirect connections are possible
 - challenges related to NG-SRI
 - no BAP on the feeder link

Source: ESA EAGER Project, White Paper, "Architectures, services, and technologies towards 6G Non-Terrestrial Networks," February 2023. Source: EC HORIZON-JU-SNS-2022 Project 5G-STARDUST, D3.1 "System Requirements Analysis and Specifications," July 2023.

• Architecture evolution in three directions: regenerative payloads, IAB, Multi-Connectivity

- Regenerative payload: full Donor on-board
 - both direct and indirect connections are possible
 - challenges related to F1-SRI on the service link
 - challenges related to NG-SRI on the feeder link
 - BAP on the service link

- Regenerative payload: Donor-DU on-board
 - both direct and indirect connections are possible
 - challenges related to F1-SRI on the service and feeder links
 - BAP on the service link

Source: ESA EAGER Project, White Paper, "Architectures, services, and technologies towards 6G Non-Terrestrial Networks," February 2023. Source: EC HORIZON-JU-SNS-2022 Project 5G-STARDUST, D3.1 "System Requirements Analysis and Specifications," July 2023.

Architecture evolution in three directions: regenerative payloads, IAB, Multi-Connectivity

- TN-NTN with transparent payload
 - challenging due to the different channel characteristics
 - both TN-gNB and NTN-gNB can be elected MN
 - both gNBs on-ground

- NTN-NTN with transparent payload
 - the NTN nodes do not necessarily belong to the same orbit
 - e.g., low-latency through LEO and large
 throughput through GEO
 - both gNBs on-ground and possible MN

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Source: ESA EAGER Project, White Paper, "Architectures, services, and technologies towards 6G Non-Terrestrial Networks," February 2023. Source: EC HORIZON-JU-SNS-2022 Project 5G-STARDUST, D3.1 "System Requirements Analysis and Specifications," July 2023.

Architecture evolution in three directions: regenerative payloads, IAB, <u>Multi-Connectivity</u>

- TN-NTN with regenerative payload
 - challenging due to the different channel characteristics
 - NG-SRI on the feeder link
 - Xn-SRI on the feeder link
 - both TN-gNB and NTN-gNB can be elected MN

Source: ESA EAGER Project, White Paper, "Architectures, services, and technologies towards 6G Non-Terrestrial Networks," February 2023.

Source: EC HORIZON-JU-SNS-2022 Project 5G-STARDUST, D3.1 "System Requirements Analysis and Specifications," July 2023.

- NTN-NTN with regenerative payload
 - the NTN nodes do not necessarily belong to the same orbit (challenging)
 - e.g., low-latency through LEO and large throughput through GEO
 - NG-SRI on the feeder link
 - Xn over ISLs

- 6G systems are expected to achieve more than "just" extremely fast connectivity
 - digital twinning between domains: convergence of the physical, human, and digital worlds
 - connected intelligence
 - immersive communications: high-resolution visual/spatial, tactile/haptic, and other sensory data

- Non-Terrestrial Networks will be pivotal to provide a ubiquitous, continuous, flexible, and resilient
 infrastructure for
 - Direct connectivity to smart phones outdoor and in light indoor/in-vehicle (emergency communications)
 - Connectivity mobile platforms (trains/planes/ships/drones/HAPs)
 - Broadcast/multicast
 - Low latency communications to support vertical markets (railway, automotive, aeronautical, etc)
 - Network-based positioning
 - IoT applications (global NB-IoT/mMTC coverage, remote/control monitoring of critical infrastructures, smart good tracking)

- The current NTN standardization framework provides a solid ground for NTN integration into 5G
- 5G-A will introduce enhancements with additional capabilities and increased performances
- 6G will target a fully unified T-NT infrastructure based on multi-dimensional multilayer architecture

 No distinction between TN and NTN nodes: they are all nodes of the same infrastructure, to be jointly optimised and exploited

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023

Enabling Technologies

Architecture and system design

Multilayered constellation from GEO to drones, Innovative LEO and vLEO orbits, optical inter and intra node-links design, cell-free MU-MIMO, traffic-driven coverage

Networking, edge computing and communications

Softwarization, virtualization, and orchestration of network resources, functional split, advanced IP, routing in the sky, resource management, integrated edge communication and computing

Flexible and integrated waveforms

Low PAPR and low OOBE solutions, Non-orthogonal techniques to increase the connection density, novel RA procedures to allow multiple transmissions per beam, multipoint transmission from the sky, distributed beamforming

Dynamic Spectrum Access and New spectrum

Coordinated and uncoordinated sharing among different access technologies, inter and intra layer, higher frequency bands, Q/V and above

Positioning

Network based positioning

AI/ML

Network and system orchestration, Radio Resource Management, Network traffic forecasting, Physical layer management, Channel estimation,

Antennas and components

Active antennas for link budget and flexible coverage, Refracting RIS for indoor coverage, regenerative payload, high-parallel energy efficient HW, Optical devices

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023 A. Guidotti - The evolution of 3GPP NTN from 5G to 5G-Advanced and 6G

Conclusions

- The integration of an NTN component into 5G is a reality since Rel. 17
- However, both **evolutionary and revolutionary technologies** are needed towards a true fully integrated NT-T system infrastructure for 5G-Advanced and 6G communication systems
- NTN will play a pivotal role in future fully unified systems, leading to a ML-MO-MB 6G NTN
 - Architecture evolution
 - Regenerative payloads, relay-based access, MC
 - Technology evolution
 - Many technologies are candidate to be key enablers for 5G-A/6G NTN
 - NTN-NTN asynchronous MC and CA
 - UE without GNSS
 - Relay-based architecture for NTN
 - MU-MIMO
 - AI and ML
 - Next generation waveforms for PAPR reduction
 - Reflecting Intelligent Surfaces

- ...

• For **future** NTN systems, we need to make a further technology leap **now**

Current funded projects on NTN...

pant N.	Participant o	organisation name			Acronym	Country
rdinator)	ALMA MAT	ER STUDIORUM - U	NIVERSITA DI	BOLOGNA	https://WBQ.eag	erproject.eu
	THALES AL	ENIA SPACE FRAN	LT SES		TASF	FR
	MARTEL GN	ивн		in	https://www.link	edin_com/company/eager-project/
	THALES DIS	S AIS DEUTS, HLAN	ND GMBH	S	https://twitter.co	mPEagersatcom
	GREENERW	AVE			GRN	FR
	THALES SIX	GTS FRANCE SAS			TH-SIX	FR
	ERICSSON A	AB			ERIS	SE
	THALES AL	ENIA SPACE UK LT	D		TASUK	UK
				_		FR
CC	CNIC		CTA DDUCT	ONS DE	****	<u>ardust.eu</u>
	SIND	1 0	214KD021		****	ES Jup com/company/5g-stardust/
		ZENT		MFAHK	Commission	DE
	ORANGE SA	Δ			ORA	FR
A. Guidotti -	THE STECHCS	GPP NTN from 5G to 5G-Ad	dvanced and 6G		SES	LU
						ГЪ

ALMA MATER STUDIORUM Università di Bologna

Dr. Alessandro Guidotti, CNIT

Research Unit at the Department of Electrical, Electronic, and Information Engineering «Guglielmo Marconi»

a.guidotti@unibo.it

www.unibo.it